

UNIT –I MATRICES

1	a) Reduce the matrix A= $\begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3 \end{bmatrix}$ into Echelon form and find its rank?	[L3][CO1]	[6M]
	b) Show that the equations $x + y + z = 4$; $2x + 5y - 2z = 3$; $x + 7y - 7z = 5$	[L2][CO1]	[6M]
	are not consistent.		
2	a) Reduce the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$ into Echelon form and find its rank?	[L3][CO1]	[6M]
	b) Find the Eigen value and Eigen vectors of the matrix $\begin{bmatrix} 5 & -2 & 0 \\ -2 & 6 & 2 \\ 0 & 2 & 7 \end{bmatrix}$	[L1][CO1]	[6M]
3	a) Define the rank of the Matrix.	[L1][CO1]	[2M]
	b) Find whether the following equations are consistent if so solve them $x + y + 2z = 4$; $2x - y + 3z = 9$; $3x - y - z = 2$.	[L3][CO1]	[10M]
4	a) Reduce the matrix $A = \begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ into Echelon form and find its	[L2][CO1]	[6M]
	$[1 \ 0 \ -1]$		
	b) Determine the Eigen values of A^{-1} where $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$	[L5][CO1]	[6M]
5	Show that the only real number λ for which the system $x + 2y + 3z = \lambda x$; $3x + y + 2z = \lambda y$; $2x + 3y + z = \lambda z$ has non-zero solution is 6 and as less the system λ . ([L2][CO1]	[12M]
6	a) Solve completely the system of equations $x+2y+3z=0$, $3x+4y+4z=0$, $7x+10y+12z=0$	[L3][CO1]	[6M]
	b) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$	[L2][CO1]	[6M]
7	a) Find the Eigen values and corresponding Eigen vectors of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}.$	[L1][CO1]	[6M]

Cours	se Code: 20HS0380	Rź	20
	b) Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$.	[L2][CO1]	[6M]
8	Find the Eigen values and corresponding Eigen vectors of the matrix A and also A^{-1} where $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$.	[L1][CO1]	[12M]
9	a) State Cayley-Hamilton theorem.	[L1][CO1]	[2M]
	b) Show that the matrix $A = \begin{bmatrix} 1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$ satisfies its characteristic equation	[L2][CO1]	[10M]
	and find A^{-1} ?		
10	Verify Cayley Hamilton theorem for $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ and find A^{-1} and A^{4}	[L3][CO1]	[12M]
	using C-H theorem.		

UNIT –II MULTI VARIABLE CALCULUS

1	a) Verify Rolle's Theorem for the function $f(x) = \frac{\sin x}{e^x}$ in $(0, \pi)$	[L2][CO2]	[6M]
	b) Verify Lagrange's mean value theorem for $f(x) = \log_e x$ in [1, e].	[L2][CO2]	[6M]
2	a)State and verify Rolle's Theorem for the function $f(x) = \log \left[\frac{x^2 + ab}{x(a+b)}\right]$ in $[a, b] (x \neq 0)$	[L2][CO2]	[6M]
	b) Verify Lagrange's mean value theorem for $f(x) = x^3 - x^2 - 5x + 3$ in [0,4].	[L2][CO2]	[6M]
3	a) Verify Lagrange's Mean value theorem for the functions $f(x) = x(x-1)(x-2)in \left[0,\frac{1}{2}\right]$.	[L2][CO2]	[6M]
	b) Expand $\log_e x$ in powers of (x-1) and hence evaluate $\log 1.1$ correct to 4	[L2][CO2]	[6M]
	decimal places using Taylor's theorem.		
4	a) Express the polynomial $2x^3 + 7x^2 + x$ -6 in power of $(x - 2)$ assigning Taylor's series.	[L3][CO2]	[6M]
	b) Using Maclaurin's series expand $\tan x$ up to the fifth power of x and hence find	[L3][CO2]	[6M]
	the series for log (sec x).		
_			100
5	a) Expand sin x powers of $(x - \frac{1}{2})$ up to the term containing $(x - \frac{1}{2})^{+}$ assigning	[L3][CO2]	[6M]
	Taylor's series.		
	b) If $u = \frac{x+y}{1-xy}$ and $v = \tan^{-1}x + \tan^{-1}y$, find $\frac{\partial(u,v)}{\partial(x,y)}$?	[L1][CO2]	[6M]
6	a) If $u = f(y - z, z - x, x - y)$ prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$ by using Chain rule.	[L3][CO2]	[6M]
	b) $u = \sin^{-1}(x - y)$, where $x = 3t$, $y = 4t^3$, then show that $\frac{du}{dt} = \frac{3}{\sqrt{1-t^2}}$ by total derivative.	[L2][CO2]	[6M]
7	a) If $u = x^2 - 2y$; $v = x + y + z$, $w = x - 2y + 3z$, then find Jacobian $J\left(\frac{u, v, w}{x, y, z}\right)$.	[L1][CO2]	[6M]
	b) Verify if $u = 2x - y + 3z$, $v = 2x - y - z$, $w = 2x - y + z$ are functionally	[L2][CO2]	[6M]
	dependent and if so, find the relation between them.		
8	a) Examine the function for extreme values $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$;	[L4][CO2]	[6M]
	(x>0,y>0).		
	b) Find the minimum value of $x^2 + y^2 + z^2$ given $x + y + z = 3a$.	[L1][CO2]	[6M]
9	a) Find the stationary points of $u(x, y) = sinx. siny. sin(x + y)$ where $0 < x < y$	[L1][CO2]	[6M]
	π , $0 < y < \pi$ and find the maximum of u.		
	b) Find the shortest distance from origin to the surface $xyz^2 = 2$.	[L1][CO2]	[6M]
10	a) Find a point on the plane $3x + 2y + z - 12 = 0$, which is nearest to the origin.	[L1][CO2]	[6M]
	b) Find shortest and longest distance from the point $(3,1,-1)$ to the sphere $x^2+y^2+z^2=4$	[L1][CO2]	[6M]

UNIT –III INTEGRAL CALCULUS

1	a) Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$	[L5][CO3]	[6M]
	b) Evaluate $\int_{0}^{\pi} \theta \sin^{8} \theta \cos^{4} \theta d\theta$	[L5][CO3]	[6M]
2	a) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$	[L5][CO3]	[6M]
	b) Evaluate the following improper integrals i) $\int_{1}^{\infty} \frac{1}{x^4} dx$. ii) $\int_{0}^{1} \frac{1}{\sqrt{x}} dx$.	[L5][CO3]	[6M]
3	a) Show that $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \pi$.	[L1][CO3]	[6M]
5	b) Evaluate $\int_{0}^{5} \int_{0}^{x^{2}} x(x^{2} + y^{2}) dx dy$	[L5][CO3]	[6M]
4	a) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 - y^2}} (x^2 + y^2) dy dx$	[L5][CO3]	[6M]
	b) Evaluate $\int_0^1 \int_x^{\sqrt{x}} (x^2 + y^2) dx dy$.	[L5][CO3]	[6M]
5	a) Evaluate $\int_{0}^{4} \int_{0}^{x^{2}} e^{\frac{y}{x}} dy dx$	[L5][CO3]	[6M]
	b) Evaluate the integral by changing the order of integration $\int_{0}^{\infty} \int_{x}^{\frac{e^{-y}}{y}} dy dx$.	[L3][CO3]	[6M]
6	Change the order of integration in $I = \int_{0}^{1} \int_{x^2}^{2-x} (xy) dy dx$ and hence evaluate the same.	[L3][CO3]	[12M]
7	a) By changing order of integration, evaluate $\int_0^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$.	[L3][CO3]	[6M]
	b) Evaluate the integral by transforming into polar coordinates $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} y \sqrt{x^{2}+y^{2}} dx dy.$	[L3][CO3]	[6M]
8	a) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by converting to polar coordinates.	[L3][CO3]	[6M]
	b) Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} (x^2 + y^2) dx dy$ by changing into polar coordinates	[L3][CO3]	[6M]
9	a) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dxdydz}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$.	[L5][CO3]	[6M]
	b) Evaluate $\int_0^{\log 2} \int_0^x \int_0^{x+y} e^{x+y+z} dz dy dx$.	[L5][CO3]	[6M]
10	a) Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z.}^{x+z} (x+y+z) dx dy dz$	[L5][CO3]	[6M]
	b) Evaluate $\int_{1}^{e} \int_{1}^{\log y} \int_{1}^{e^{x}} \log z dz dx dy$.	[L5][CO3]	[6M]

UNIT –IV VECTOR DIFFERENTIATION

 $\mathbf{R20}$

1	a) Find <i>grad</i> f if $f = xz^4 - x^2y$ at a point $(1, -2, 1)$. Also find $ \nabla f $	[L1][CO4]	[6M]
	b) If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ then show that $\nabla r = \frac{\vec{r}}{r}$	[L2][CO4]	[6M]
2	a) Find the directional derivative of $2xy + z^2$ at $(1, -1, 3)$ in the direction of	[L1][CO4]	[6M]
	$\vec{i} + 2\vec{j} + 3\vec{k}$		
	b) Find the directional derivative of $xyz^2 + xz$ at (1,1,1) in the direction of	[L1][CO4]	[6M]
	normal to the surface $3xy^2 + y = z$ at (0,1,1)		
3	a) Find the angle between the normal to the surface $xy = z^2$ at the points	[L1][CO4]	[6M]
	(4,1,2) and $(3,3,-3)$.	II 11/00 41	
	b) Find the maximum or greatest value of the directional derivative of $f = x^2 y z^2$ at the point (2.1 -1)	[L1][CO4]	[6M]
1	at the point (2,1, -1). $\sum_{i=1}^{n} \frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} + \frac{1}{2$		[6M]
4	a) Find the divergence of $f = (xyz)i + (3x^2y)j + (xz^2 - y^2z)k$.		
	b) Show that $\overline{f} = (x+3y)\overline{i} + (y-2z)\overline{j} + (x-2z)\overline{k}$ is solenoidal.	[L2][CO4]	[6M]
5	a) Find $div\overline{f}$ if $\overline{f} = grad(x^3 + y^3 + z^3 - 3xyz)$.	[L1][CO4]	[6M]
	b) Find <i>curl</i> of the vector $\vec{f} = (x + y + 1)\vec{i} + \vec{j} - (x + y)\vec{k}$.	[L1][CO4]	[6M]
6	a) Prove that $\overline{f} = (y+z)\overline{i} + (z+x)\overline{j} + (x+y)\overline{k}$ is irrotational.	[L6][CO4]	[6M]
	b) Find curl \overline{f} if $\overline{f} = grad(x^3 + y^3 + z^3 - 3xyz)$.	[L1][CO4]	[6M]
7	a) Find 'a' if $\overline{f} = y(ax^2 + z)\overline{i} + x(y^2 - z^2)\overline{j} + 2xy(z - xy)\overline{k}$ is solenoidal.	[L1][CO4]	[6M]
	b) If $\bar{f} = (x + 2y + az)\vec{i} + (bx - 3y - z)\vec{j} + (4x + cy + 2z)\vec{k}$ is irrotational	[L1][CO4]	[6M]
	then find the constants <i>a</i> , <i>b</i> and <i>c</i> .		
8	a) Find $\nabla \times (\nabla \times \overline{f})$, if $\overline{f} = (x^2 y)\overline{i} - (2xz)\overline{j} + (2yz)\overline{k}$.	[L1][CO4]	[6M]
	b) Prove that $div(curl\bar{f}) = 0$.	[L1][CO4]	[6M]
9	a) Show that that $\nabla(\mathbf{r}^n) = n \mathbf{r}^{n-2} \overline{\mathbf{r}}$	[L2][CO4]	[6M]
	b) Prove that $curl(\emptyset \bar{f}) = (grad\emptyset) \times \bar{f} + \emptyset(curl\bar{f})$	[L6][CO4]	[6M]
10	a) Prove that $\nabla . \left(\bar{f} \times \bar{g} \right) = \bar{g} . \left(\nabla \times \bar{f} \right) - \bar{f} . \left(\nabla \times \bar{g} \right)$	[L6][CO4]	[6M]
	b) Show that $\nabla \times (\bar{f} \times \bar{g}) = \bar{f}(\nabla, \bar{g}) - \bar{g}(\nabla, \bar{f}) + (\bar{g}, \nabla)\bar{f} - (\bar{f}, \nabla)\bar{g}$	[L2][CO4]	[6M]

R20

UNIT –V VECTOR INTEGRATION & INTEGRAL THEOREMS

1	a) If $\overline{F} = (5xy - 6x^2)\vec{i} + (2y - 4x)\vec{j}$. Evaluate $\int_c \overline{F} \cdot d\overline{r}$ along the curve 'c' in	[L5][CO5]	[6M]
	xy-plane $y = x^3$ from (1,1) $to(2,8)$.		
	b) Find the work done by a force $\overline{F} = (2y+3)\vec{i} + (xz)\vec{j} + (yz-x)\vec{k}$ when it	[L1][CO5]	[6M]
	moves a particle from $(0,0,0)to(2,1,1)$ along the curve $x = 2t^2$; $y = t$; $z = t^3$.		
2	If $\overline{F} = (x^2 + y^2)\vec{i} - (2xy)\vec{j}$. Evaluate $\int_c \overline{F} \cdot d\overline{r}$ where 'c' is the rectangle	[L5][CO5]	[12M]
	in xy-plane bounded by $y = 0$; $y = b$ and $x = 0$; $x = a$.		
3	a) Evaluate $\int_{s} \overline{F} \cdot \overline{n} ds$. where $\overline{F} = 18z\overline{i} - 12\overline{j} + 3y\overline{k}$ and 's' is the part of the	[L5][CO5]	[6M]
	surface of the plane $2x + 3y + 6z = 12$ located in the first octant.		
	b) Evaluate $\int_{s} \vec{F} \cdot \vec{n} ds$, where $\vec{F} = 12x^{2}y\vec{i} - 3yz\vec{j} + 2z\vec{k}$ and 's' is the portion of	[L5][CO5]	[6M]
	the plane $x + y + z = 1$ located in the first octant.		
4	a) If $\overline{F} = 2xz\overline{i} - x\overline{j} + y^2\overline{k}$. Evaluate $\int_{v} \overline{F} dv$ where 'v' is the region bounded by	[L5][CO5]	[6M]
	the surfaces $x = 0$; $x = 2$: $y = 0$; $y = 6$ and $z = x^2$; $z = 4$.		
	b) If $\overline{F} = (2x^2 - 3z)\vec{i} - 2xy\vec{j} - 4x\vec{k}$ then Evaluate $\int_{V} \nabla \overline{F} dv$ where 'v' is the	[L5][CO5]	[6M]
	closed region bounded by $x = 0$; $y = 0$; $z = 0$ and $2x + 2y + z = 4$.		
5	a) State Gauss's divergence theorem.	[L1][CO5]	[2M]
	b) By transforming into triple integral, Evaluate	[L5][CO5]	[10M]
	$\iint_{\mathcal{S}} x^3 dy dz + x^2 y dz dx + x^2 z dx dy \text{ where 's' is the closed surface consisting of}$		
	the cylinder $x^2 + y^2 = a^2$ and the circular discs $z = 0$; $z = b$.		
6	Verify Gauss's divergence theorem for $\overline{F} = (x^3 - yz)\vec{i} - 2x^2y\vec{j} + z\vec{k}$ taken over	[L2][CO5]	[12M]
	the surface of the cube bounded by the planes $x = y = z = a$ and coordinate		
	planes.		
7	a) Apply Green's theorem to Evaluate $\oint (2x^2 - y^2)dx + (x^2 + y^2)dy$ where 'c'	[L1][CO5]	[6M]
	is the enclosed by the x-axis and upper half of the circle $x^2 + y^2 = a^2$		
	$ = \frac{1}{2} \sum_{i=1}^{n} \frac$	[1.5][CO5]	[6M]
	b) Evaluate by Green's theorem $\oint_c (y - \sin x) ax + \cos x ay$ where 'c' is the	[[25][005]	
	triangle enclosed by the lines $y = 0$, $x = \frac{\pi}{2}$ and $\pi y = 2x$.		
8	a) State Green's theorem in a plane.	[L1][CO5]	[2M]
	b) Verify Green's theorem in a plane for $\oint_c (x^2 - xy^3)dx + (y^2 - 2xy)dy$ where	[L2][CO5]	[10M]
	'c' is a square with vertices (0,0)(2,0)(2,2) and (0,2).		
9	Verify Stoke's theorem for $\overline{F} = (x^2 + y^2)\vec{i} - 2xy\vec{j}$ taken round the rectangle	[L2][CO5]	[12M]
	bounded by the lines $x = \pm a$, $y = \pm b$.		
10	a) State Stoke's theorem.	[L1][CO5]	[2M]
	b) Verify Stoke's theorem for $\overline{F} = x^2 \overline{i} + xy \overline{j}$ integrated round the square in the	[L2][CO5]	[10M]
	plane $z = 0$, whose sides are along the line $x = 0$, $y = 0$; $x = a$, $y = a$.		

Prepared by: Dept. of Mathematics